Introduction

Central venous catheter (CVC) induced nosocomial infections continue to be a serious medical problem. The pathogenesis and spread of catheter-related infections is multifactorial; the main source may be a result of skin organism migration along the catheter tract, while hub contamination may lead to intraluminal colonization and produce bloodstream infection. A new catheter material called Oligon has been developed which claims to prevent bacterial growth. The aim of this study was to examine the effectiveness of the Oligon material with and without a heparin coating in preventing growth of the most common nosocomial organisms.

Test Method

Antimicrobial efficacy of the Edwards Vantex Central Venous Catheter, constructed of the Oligon material, with and without heparin coating,* was tested against conventional polyurethane CVCs. The test methodology involved a minimum of 3 logs of organism challenge to a tube containing a catheter segment submerged in diluted saline solution containing culture medium. This method was selected to simulate actual in vivo clinical application at the point of insertion through subcutaneous tissues, with ≤ 1 mm fluid surrounding the catheter. Catheter segments were exposed to the solution environment with microorganism inoculations for 7 days. The microorganism concentrations were evaluated by serial dilution, pour-plate and membrane filtration after 6, 24, 48, 72 and 168 hours (7 days).

Broad-spectrum microorganisms selected from the American Type Culture Collection (ATCC) catalogs were used to assess the antimicrobial activity of the Oligon material with and without heparin coating. The selection of organisms was based on those representative of the most common microorganisms associated with indwelling central venous catheter infection, referenced in peer-reviewed articles and abstracts, and representing a broad spectrum of gram-positive and -negative bacteria, as well as yeast.

- Candida albicans
- Enterococcus faecalis
- Staphylococcus epidermidis
- Enterobacter aerogenes
- Corynebacterium diphtheriae
- Staphylococcus aureus
 (Gentamicin & Methicillin Resistant Strain)
- Pseudomonas aeruginosa
- Staphylococcus aureus
- Acinetobacter calcoaceticus
- Klebsiella pneumoniae
- Serratia marcescens
- Escherichia coli
Antimicrobial activity on the Oligon surface and inner lumens of the catheter during handling and placement has been demonstrated through in vitro testing against organisms commonly associated with nosocomial infections. The activity of the antimicrobial agents is localized at the catheter surfaces and is not intended for treatment of systemic infections.

In vitro testing demonstrated that the Oligon material provided broad spectrum effectiveness (≥3 log reduction from initial concentration within 48 hours) against the organisms tested: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, GMRSa, Corynebacterium diptheriae, Enterobacter aerogenes, Pseudomonas aeruginosa. The impact of Oligon material on infection rates has not been demonstrated.

Contact inhibition of microbial growth on surface of catheters. Effective against organisms commonly associated with nosocomial infection, e.g., Staphylococcus epidermidis.

Antimicrobial activity associated with AMC THROMBOSHIELD (an Antimicrobial Heparin Coating) has been demonstrated using in vitro agar diffusion assays against the following organisms: Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, Candida albicans, Escherichia coli, Stomatococcus macedonsis, Acinetobacter baumannii, Enterobacter aerogenes, GMRSa, and Pseudomonas aeruginosa. The impact of Oligon material on infection rates has not been demonstrated.

*Contact inhibition of microbial growth on surface of catheters. Effective against organisms commonly associated with nosocomial infection, e.g., S. epidermidis.

<table>
<thead>
<tr>
<th>Organism Challenged (> 3 logs)</th>
<th>Gram-Positive Organisms</th>
<th>Gram-Negative Organisms</th>
<th>Yeast Organism Challenged (> 3 logs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Staphylococcus aureus,</td>
<td>Pseudomonas aeruginosa,</td>
<td>Candida albicans</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus epidermidis,</td>
<td>Escherichia coli,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enterococcus faecalis,</td>
<td>Klebsiella pneumoniae,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GMRSa, Corynebacterium</td>
<td>Enterococcus faecalis,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diptheriae</td>
<td>Candida albicans,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acinetobacter baumannii,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stomatococcus macedonsis,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enterobacter aerogenes,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GMRSa and Pseudomonas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>aeruginosa</td>
<td></td>
</tr>
</tbody>
</table>

Test Results

Bacterial reduction of polyurethane control catheters vs. Vantex Central Venous Catheter with Oligon material with and without heparin coating:

Conclusion

As was observed in the testing, the Vantex Central Venous Catheter accomplished a significant decrease in concentration for all microorganisms tested, as compared to the polyurethane control catheters. Because the antimicrobial agents are incorporated into the material, both the inside and outside of the catheter are capable of reducing the spread of organisms, potentially reducing the incidence of catheter-related nosocomial infection.

References

©2011 Centurion Medical Products Corporation LIT110V2

Offered exclusively through: Edwards Lifesciences